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Some Operational Formulations for Computational Solutions of
Underwater Acoustic Scattering Problems*

by

David Middleton'

Abstract

Scattering from ocean wave surfaces, volumes, and bottoms remains a perennial problem
not only in underwater acoustics but also in the use of acoustical methods ir. z-mote sensing and

modeling of the medium itself. Although analytic solutions are sometimes available, cf. [1], [6], in
many important cases, particularly those involving multiple scatter and non-isogradiant (Vc * 0)

phenomena including the r6le of both stationary and moving arrays, and general geometries,

effective modeling and quantitative, predictive results ultimately require computational methods.

This is true for both deterministic and random media.
It is the aim of this introductory study to present a combined analytical-operational

framework from which computational solutions to underwater acoustic scattering problems,

including relevant ocean boundary interactions, can be initiated and carried out. It is emphasized
that here explicit computational procedures are not developed. Rather, the specific aim is to present

the "macro-algorithms" from and to which appropriate software may be designed and applied. e .

This is done by providing formal operational structures (with some special cases in which analytic

solutions are obtainable). A collateral aim of this work is to entice interest in pursuing

computational formulations, based on the various formal operational "solutions" derived here for

both deterministic and general random acoustical (i.e., scalar) fields, cX(R,t).
For inhcmogeneous deterministic media (Vc * 0; c = c(r,t) = co + (r,t), with C

nonrandon, for example), operational solutions may be derived directly: all representations of the
medium (and boundaries) are equivalent. The resulting solutions provide a possible alternative

approach to the current "standard" methods involving partial or parabolic equations (PE)

developments [7], [8], at the same time including general arrays, geometries, and signals.
On the other hand, most of the scattering mechanisms in the ocean are essentially random.

Accordingly, in these cases, scattering "solutions" are based on the appropriate Langevin equation

governing propagation, namely, on the ensemble of representations (a(R,t)} for which various

appropriate probability measures (often nongaussian) are developed, based on both the physics,

Based in part on earlier work supported by the Office of Naval Research (1970-1982) and on more recent studies for
Codes 10 and 31. NUSC, 1988. 1989. See also [25] herein.

Contractor, Physics and Applied Mathematics, 127 E. 91 Street, New York. NY 10128. USA.
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geometry, and the random mechanisms involved. Thus, practical solutions here are the various

moments <a>, <ala2>, etc., and pdfs wl(a), wl(al,a 2), etc., which are needed, for example,
in the calculation of scattering cross sections and subsequent signal processing for target detection

and remote sensing [2]-[4].
The desired framework is obtained by recognizing that both the deterministic and random

scattered fields in these linear media are representable as four-dimensional feedback systems, with
the inhomogeneous portions (including the ocean interfaces) constituting the feedback operations.
New features of this work include a combination of diagram methods, perturbational operational

series, and equivalent (i.e., deterministic) media operators, which then provide the needed

structure for both the direct and moment solutions a, or <a1 >, etc., independently, with the latter

based on the resultant Dyson and Bethe-Salpeter forms, for <x>, <aja 2>, etc.[2], [3]. Various
analytical, iterative, and approximative examples and proccdures are briefly presented, to illustrate
the desired formal solutions and to provide elements of a framework for computational

implementation.

The interfacing between these formally analytic solutions, their software realizations, and

the acquisition of (nearly) on-line numerical results remain a major challenge.

1. Introduction
Scattering from ocean wave surfaces, volumes, and bottoms is an enduring, central

problem not only in underwater acoustics but also in the use of acoustical methods in remote
sensing and modeling of the medium itself. Fortunately, in a number of important applications
(where first-order Born approximations are adequate), analytic solutions are available (see, for

example, recent work of the author [1], [4]).
In many cases, however, strictly analytic methods fail, primarily because of multiple scatter

phenomena, which though linear, destroy the reciprocal character of conventional solutions (for
ideal media). Moreover, the requirement of effective modeling imposes further complexities: the

field nature of the solutions must include the r6le of the transmitting and receiving arrays whereby
the system sensors and signal processing itself are suitably coupled to the medium in question, cf.
Fig. 1.1 ff. In addition, doppler and gradient effects may also be important. For short ranges

velocity gradients in the medium can often be neglected (i.e., Vc 1 0), but for longer ranges they
must be carefully taken into account (Vc * 0). Furthermore, geometry plays a critical r6le:

platform motion, beam size, structure, and direction, as well as location in the medium, all dictate

potential interactions with the wave-surface and bottom boundaries, as Fig. 2.2 indicates, along
with the inherently random inhomogeneous effects of the volume itself [3], [4].

We distinguish two main areas of interest: A. deterministic inhomogeneous media, where

2
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random variations are largely ignorable vis-A-vis the large-scale deterministic variations, and B.

random inhomogeneous media, for which significant media variations are stochastic, with and

without deterministic components. The former class (A) appears to be so far the one which has

received the greatest attention with respect to numerical methods [7], [8], and [9], [10], with

attention largely centered on the purely spatially dependent velocity gradient Vc(rz) = co + Z(r,z).

Here, however, in advance of current efforts, we shall direct our attention to the more complex

situation (B), where in addition to deterministic variations of Vc, there are important random ones

as well. In fact, our treatment will proceed in a general canonical way, allowing for both the

deterministic and random variations in the medium, including its important boundaries.

1.1 Aims of the Paper

Before numerical procedures can be applied, however, it is necessary to develop the

appropriate analytical forms of solution from which in most cases numerical results must be

extracted. The aims of this paper, therefore, are to outline an analytical-operational framework for
initiating computational solutions to underwater acoustic scattering problems, in particular, which

include the relevant ocean surface and bottom boundaries, as well as volume effects.

We emphasize that this paper does not intend to provide explicit computational procedures

and solutions: it is rather aimed at providing the "macro-algorithms" from and to which appropriate
software may be designed and applied. Our aims include providing formal operational structures,

with some special cases in which analytic solutions are obtainable, and which consequently require
a lower order of computational effort and sophistication. A collateral aim of this work is to entice

interest in pursuing a computational formulation, based on the various formal operational

"solutions" derived here for the composite dterministic and random fields c(R,t), namely <(x>,

cf. (2.33), and higher-order moments <ala 2>, etc. Our approach here is a "top-down" approach,
in which we start with as general a formulation as possible, consistent with the broad class of

problems embodied in the propagation and processing schema of Fig. 1.1 and the geometries of
Fig. 2.1 ff. We proceed then to more specialized cases. This reveals the embedding of the latter in

the generality of the former, and thus provides a "perspective" for specific medium models.

1.2 New Elements

Among the new features of the present paper are
(1) Formal operational formulations which can provide the basis for a large-scale

computational attack on these four-dimensional scattering problems, Sec. 2.

(2) A feedback operational method for obtaining the (first-order) equivalent medium

renormalization operator, cL (2.34), by means of a converging series of estimates,
Sec. 3.3.

3
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Fig. 1.1 Operational schematic of an inhomogeneous (linear)mediwm, with source and receiver

coupling. Here 0 is the inhomogeneity operator associated with this general
inhomogeneous (linear) medium.

(3) Some fully analytic solutions in important special cases, e.g., infinite or "weakly-

bounded" media, where in effect there is negligible interaction between sources,
boundaries, and among the different scattering modes (Surface, Volume, Bottom),

Sec. 2.7.
(4) Various explicit physical scattering models for the inhomogeneity operator 01

including the important wind-wave scattering cases, Eqs. (2.31).
(5) A hierarchy of approximations for the equivalent deterministic inhomogeneity operator

0(d), which apply in different physical situations, Sec. 2.5.

13 Organization
Accordingly, the present paper is organized in the following general but concise fashion:

Section 2 introduces formal operational solutions, which form the basis for the treatment of both

deterministic and random media. In Section 3 various diagram methods and solution equivalents

are presented, first for the deterministic cases and then for the many situations involving random
media components. Useful approximations are next briefly described in this section, along with a
possible method for estimating the renormalization operators. Section 4 completes the paper with a

4
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discussion of the interfacing problems between the analytic/operational and computational

formulations by reviewing via the text the main steps leading up to the as yet unachieved software

realizations.

2. Formal Operational Solutions
Accordingly, the above discussion indicates the critical need, at some point, for numerical

procedures to obtain the needed quantitative description of the received acoustic field, for whatever

operational or oceanographic purpose at hand.
What are the needed descriptors of this received field? This will, of course, depend on

whether or not there are significant random, as well as deterministic inhomogeneities in the

medium. Here we shall assume a (linear) combination of both types, which permits us to focus on

one or the other as limiting cases. Thus, in general we can write formally for the inhomogeneity

operator 0, cf. Fig. 1.1

(2.1)

where Oh), (d) are respectively associated with the deterministic and random parts. For example,
h) usualy dominates in a nonzero-gradient ocean with small surface interactions (cf. some of the

current treatments [7]-10]), while OM is most significant in surface or bottom scatter situations, at
comparatively short ranges and high frequencies, where Vc 1 0 often, cf. [1], [4].

Now, since the medium, including its boundaries, is both spatially and temporally

stochastic in general, "solutions" to the appropriate propagation equations for the input, incident,
and scattered fields are necessarily statistics of these fields, namely, means, variances,
covariances, higher-order moments, and finally, various orders of the probability distributions of

these fields. Thus, if a(R,t) represents the (acoustic) field at point (R,t) in this random,
inhomogeneous medium, one seeks <a>, <ixai 2> (= <a(Rt,t1 )a(R 2,t2)>), <a1 X2tx 3>, etc., and
more completely, wl(il), w2(x1 ,cx2), etc. The lower order moments, for example, <oc>,
<ala 2>, are needed in obtaining the scattering cross-sections of the "illuminated" wave-surface or
bottom, cf. Fig. 2.1, while wl(c) is required for signal processing (cf. Part II of [4]). What

makes the latter critically non-trivial is the fact that x is often strongly nongaussian (cf. VI of [4])..
Even in the cases where the Central Limit Theorem applies (cf. Sec. 7.7 of [5], for example), so

that the field is gaussian, one still needs the lower-order moments <a>, <axli 2>, in order to

specify the gaussian process, ox(R,t).

2.1 Formal Development
Clearly, for realistic solutions, many complicating effects must be included, which almost

always at some point makes a computational effort essential. Initially, one starts with a

5
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c(r,t) S
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'.';Jr' ,-oJ -- - ------

c 0 (z):

Fig. 2.1 Schematic scatter channel geomety of source (T), medium (V), and boundaries (SB),
with receiver (R), D = unscattered, or "direct" path, and n is the order of the interactions.
Sufficiently high frequencies are assumed to permit illustrative ray paths.

propagation equation which at least implicitly contains the major physical phenomena governing
the generation and development of both the scattered and unscattered fields. Formally, for the
linear media assumed here, the propagated field a(R,t) obeys a partial integro-differential equation
of the form

(t(O) - =- Gr + [b.c.'s + i.c.'s].

1 (2.2)

Here GT is the source function, e.g., GT = 6 TSin, cf. Fig. 1.1, and L(O) is a linear (scalar) partial
differential operator, where L(O) is associated with the homogeneous portion of the medium. In

6
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(2.2), ( is, generally, a (scalar, linear) integro-differential scattering operator, which describes the
interaction of the incident, i.e., homogeneous field with the differential, or local, scattering
elements of the inhomogeneous portion of the medium. (The possible integral operator component
of 0 stems from local scatterer doppler effects, for example.) Here, b.c.'s = boundary conditions,
and i.c.'s = initial conditions. Since, formally from (2.2) ax = (t(O) - .)-l(.GT)Ib.c. i.c., from (x =
T<M (-GT), cf. Fig. 1.1, one has directly

T0 = ( -)- )'(2.3)

for the medium operator T<M, now expressed in terms of the homogeneous and inhomogeneous
components of the medium.

Because of the usual statistical nature of 0, Eq. (2.2) is really an ensemble of equations,
which is called the (associated) Langevin Equation [cf. Chapter 10 of [5]), which can be written as

{(t(O) - O)oa = - GT + (b.c.'s + i.c.'s)}, (2.4)

where the brackets { } emphasize the ensemble character of this Langevin equation. In subsequent
discussion the brackets may be omitted for convenience, it being noted that 0, and therefore cx, are
stochastic. (See Sec. IIB of [4] for remarks.)

An important example for acoustic propagation in underwater media is the case of
inhomogeneous absorptive media [3], for which (2.2) is specifically [11]

1 + Ex(r,t) V2 _ 2 [(1 + e(R,t)] Lt I = -GT (2.5a)
I ka t) co at2 j

where

2 - X at(2.5b)

with cx = ox (1 + yx[r,t]) generally. When ox = 0, (2.5a) reduces to the more familiar "extended"

Helmholtz equation

D2V2 [(I + E(R,t)] 2 a = -GT (2.6)

7
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with

0=_L L-2; cZ0) , 2 t 2' (2.6a)

where

R = xXx + [yy + izZ, (2.7)

and rectangular coddinates are assumed throughout, so that V • V = V2, etc. Specifically, co =

(constant) wavefront fed, E embodies the effects of velocity gradients, internal wave
phenomena, and/or (,- _-k) local turbulence, while rx represents the effects of relaxation absoprtion
(due to Mg2SO4 and other salts).

Similarly, in the more restricted situations where (2.6) is replaced by a purely deterministic
model in which E(R,t) -+ e(R) is nonrandom, this Helmholz equation can be approximated (at a
given frequency fo) by a basic form of the parabolic equation (PE), which is espressed by (Eq.
(2.34), [8]), in cylindrical co6rdinates [R = (r,z) = (r,O,z)]:

D - + =(A; +Bo ao(R), (2.8)

where specifically

i i
B ko [n2(r,z) - ]; - ; ko= c/co = 2fo/co, (2.8a)

n2  (1 + e) . (2.8b)

Comparing (2.2) and (2.8) gives at once here

t(O)= .- -; =Ac [-ikoe2]1 (2.9)
az2 ar

where ' = unit operator, tC = C, etc., and Li(0) ao = 0 is an equation of the Schrbdinger type since
B is purely imaginary.

The formal solution of the Langevin equation (2.4) is obtained from the equivalent

operational form

t-fta=](-OT); a=aH+aI; aH-(-GT), (2.10)

8
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where aH is the homogeneous (i.e., non-scattered) component of the total field a, with ai the
associated inhomogeneous (scattered) field. 101 is t()4, with the boundary and initial conditions;
in fact, 101 is the integral Green's function operator

1k1R,t I R',t') =- t' fdR'g(R,tIR',t') ( )R'.X 2.1
.- (.n)

obtained from t(O)g = -(R-R') 8(t-t'). The formal operational solution of (2.10) now becomes

-a= ) all,

(2.12)

Here A is thefield renormalization operator (FRO), and (2.12) represents the Feedback Operational
Solution (FOS) for a, c.f. remarks following Eq. (2.35) et seq. Expansion of (2.12) yields the
Perturbation Theoretical Series Solution (PTSS)

a = aH +Y,(")aH. TII < 1,
n=1 (2.13)

where A (n = AA ... q] n is the n-iteration ofA and where the operator formalism used here is

represented explicitly by

(A)(n) = A(n) E A(R,t I R',t') A(R',t'l R",t)... A(R(nl-),t(n-') I R(n)t(r)) (2.13a)

which is generally distinct from the direct operator product

An E A(R,t I R',t') A(R,t I R",t") . A (R,t I R(n),t(n)) (2.13b)

and its more general form

A, kn = A(R,t I R',t') ... A(Rn,tn I R(n),t(n)). (2.13c)

We have also the conventions

9
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A 1,!= A(R 1 ,t 1tR',t')t(R,t 1 R",t")

I (2.13d)
AlIA2 -- A(R l,tllR',t)]A (R2,t21R",t")

so that clearly A19 2 # 924 i.e., 1, A2 do not commute, unless the operand is symmetric.

22 Some Homogeneous Methods and Results

For the usual cases where there is negligible interaction of the medium and boundaries

upon the source, we can replace A(I by I., where l. is the integral Green's function operator for
A _+A.the associated infinite homogeneous medium. Then, also, we have il ^l 0.0L cf. (2.12).

Next, to proceed further it is clear from (2.12) that we must determine the homogeneousA
field aH, 11. = 0, or =0, now. In the light of the fact that media boundaries or interfaces can be

equivalently considered as (distributed) inhomogeneities in an otherwise homogeneous medium,

cf. Sec. 2.4 ff., to obtain solutions in the homogeneous cases we must therefore consider

unbounded media, along with the condition { =0. More precisely, by "unbounded" we mean the

infinite spatial domain exclusive of sources.
The general method of solution here (including bounded media) involves two steps:

I. Obtain the associated Green's function, g, from (2.2), ((0 = 0);
II. Construct the corresponding GHP (Generalized Huygen's Principle) [20], } (2.14)

and thereby obtain the field, a. For unbounded homogeneous media this is easily done. Thus, the
Green's function g. is found from the defining relation

t(O) = -(t-t')8(R-R'), (2.14a)

or

g(R,t I R',t'). = - lS..tt-8R'R-, (2.14b)

where IL is the inverse (integral) operator to t(o) + i.c.'s, with IL - 1 = t(O). Integrating over

(R',t') shows at once that IL and g. are related here by

101(R,t I R',t')o. -- Jdt' JdR'g(R,tIR',t'). ( )R'X

-"~ () (2.15)

10, t t'-

10
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where, by causality, g. = 0, t < t'-, which represents the initial condition (i.c.) on the "point"-
source in (2.14a). Thus, A . is now the Green's function operator, with the kernel g.

The desired field ax(R,t)* is found directly from (2.2) (0, b.c.'s = 0), viz.:

.= - GT, or (2.16a)

ct(R,t )** - 1QL(-GT) = Jdt' IGT(R',t')g(R,t I R',t'). dR' (2.16b)
-' VT

= fdt' tT(g.Sn) = JTATSindt', (2.16c)

where GT = 0, t' < to-, R * VT: the source function is initiated at t' = to and occupies the domain
VT(<-*). The relations (2.16b,c) are the simplest form of GHP here for homogeneous unbounded
media (outside the source domain).

Various transform equivalents of A. prove useful. These may be expressed as follows,
from (2.16b):

=-Fs 1 { fdt' IYo(R,s I R't'). ( )R,' dR'} -- F- 1 (Y.*) (2.17a)
--@, (@*)

=- Fs-1 I Jdt' JYo(k,s I R't'). ( )R,, dR'j = --- Fs- (9Po,) (2.17b)

--- (.()
=-FkFsl {Yo(k,s)** Idt' lem-ik ' R ' - sc ( )R',t'dR'} (2.17c)

where (2.17a-c) define the transformed operators 'o o,** (= .o(k,s I R',t').) respectively,
and where Ft (1Lt,) = - ,to,, FR-1 F1l.) = - o(ks I R',t') are the corresponding inverses.

The general transform relations are explicitly

.. i (O)

a(t-t') = Fs 1 (e-StA(s)) = JA(s)eSt.4) - * 0, t > t-
Brj-i-d 2 -i = 0, t < t'-- (2.18a)

where s is a complex (angular) frequency, and provided all the singularities of A(s) lie in Re(s) <
d; a = 0, t < t'- is, of course, an initial condition (i.c.). The inverse of (2.18a) is

11
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e-st'A(s) = Ft (a(t-t')) = Je-Sta(t-t')dt = e- st' Je-a(T)dr, Re(s) >0. (2.18b)

In the steady-state regime (t' -- ---o) we choose d = 0 and use s = ic0 = 2xif, where (of) are real

frequencies, with an appropriate indentation of the contour (Bri, d=O) for any singularities on
Re(s) = 0. The contour BRI is a Bromwich contour [26]. Similarly, FR- 1, Fk are spatial
Fourier transforms, e.g.,

B(k) = FR- I Jb(R)) = fe-ikb(R)dR;
rRI (2.18c)

b(R) = Fk (B(k)) = eikRB(k) dk
(k) (2n)3

where, as before, cf. (2.7), k = ixkx + Iyky + tzkz (= 2xv) is a vector wave number (and v is a
vector spatialfrequency). Multiple transforms of quantities like C(R,t) are handled in the same
way, cf. (2.17b,c).

For those unbounded media-unbounded in the sense that a propagating wave front never
encounters a bounding surface-the evaluation of the Green's function g0. from (2.14a) and the
general field from (2.16) is readily accomplished. From (2.14a) one has

FR-i1Ft L(O) { rs-- A (go,.)) = -e -ik' R-st', (2.19a)

go,.0 = go(k,s I R',t').. = -Lo(k,s)-Ie - ik' R' - st ' , (2.19b)

where Lo(k,s) is the result of applying t(O) to g's- I Fk, remembering that Ve ik'R = ikeik' R,
V2eik.R = _k.keik.R = _k2eik.Ro_ est = sest, etc. In fact, one hasa it

-Lo(k,s)- 1 = y,(k,s 0 (2.20)

cf. (2.17b,c) so that, from (2.19b),

g(R,t I R't'). = Fs7-Fk (go,..) = jes(t - 2 s- jeik'(R-R')(LO(ks)-) ( d k  (2.21a)
BrI 276 [k] (2n)3

This can be put in the more convenient equivalent form for evaluation with the help of spherical

coordinates: k = (k, w [= cos 0], 4), viz.:

12
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[1 2X1

g(R,t I R't'). = feS(Z') 1 k2dk Jdw. •[-Lo(k,s)-jeikIR-R'Iwdo. (2.2 1b)
BrI 2ni (2n)3 o -1

A. Conditions:

Various conditions and properties of (2.21b) are now noted:

(i). "Spatial causality": this is the radiation condition [15]

a + R {coat j -j =0, R =IRI, (2.22)
.Rik ) RYo

which ensures that only outgoing waves from the source (eVT) are propagated. This spatial

causality condition is used in the specific evaluation of go,.*, (2.21b), by appropriate modifications

Ck of the k-contour (-o,-) to include only singularities in the complex k-plane which yield the

required outgoing waves.

(ii). "Temporal causality": this is the well-known condition that propagation cannot occur

before the source initiating it is activated, cf. (2.15), (2.18), or more precisely, that events cannot

occur (macroscopically) at some point P(R,t) before the source has been initiated and the field

generated in the medium has reached the point in question. For causality in time one has the Paley-

Wiener criterion [5], pp. 96, 97, 102 and Refs. Here (s - ico):

J-loIYo(RjOIR'). 12 dco <cc, (2.23)

0

where specifically

Yo0(R,sR').* = !T (g(R,sIR',t').es t') = Yo(R,sR',t')*e st', (2.23a)

1* 2K

-k2dk jdw J[-Lo(ks)]-l]eikIR-R'0 d, (2.23b)
(2n)3 0 -1

from (2.21b), (2.17a). This condition is obeyed generally, from the initial condition on g, cf.

13
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(2.15). The combination of (2.22) and (2.23) is the full, space-time causality condition, which

when axiomatically invoked (as it is here) ensures that only time-related solutions of (2.16) are

possible.
(iii). Reciprocity: the point source [in (2.14a)] and the observer [at P(R,t)] are

interchangeable in the Green's function, provided temporal causality [(ii) above] is also obeyed.

Thus, one has R' -4 R, R -+ R' and t 4 -t', t' -4 -t, so that g(R',-t'IR,-t). From (2.21) it is at

once evident that reciprocity for these homogeneous media is obeyed.

(iv). "Regularity at infinity": [15] this ensures that Ig. (5 **), i.e., is bounded as R -+ **;

(this is not necessarily guaranteed by (2.22)). This condition is a reflection of the fact that the

(point-) source has bounded energy and consequently its field (g.) must have also, all R.

Not too surprisingly from the above, we may now regard these homogeneous linear media

as being, in effect, linear space-timefilters. In the language of modem circuit theory the Green's

function, g. 0, represents the medium's weighting function; Yo,., 9o,. correspond to the

frequency-, and frequency-wave number system functions, or "filter" spectral densities, of this

causal, space-time filter, where the governing space-time causality condition is the combination of

(i) and (ii) above, cf. (2.22), (2.23). However, unlike conventional, "lumped-element" circuit

models, these "circuits" (i.e., the medium) are in effect composed of a continuum of elements,

distributed throughout space. The dynamical ("circuit") equations of the latter are partial

differential equations, obeying boundary conditions (here as R -+ *a, cf. (2.22)) as well as initial

conditions, while the former are limited to ordinary differential equations, subject only to initial

conditions; (both obey appropriate stability conditions, (iv), for example), [27]. Further critical

differences appear when the medium becomes inhomogeneous, and random [cf. Sec. 2.4 ff.].

For the Helmholtz case (2.6), (2.6a), (0 = 0, it is easily seen that (2.11) becomes (2.15),

and that following the methods described in (2.16)-(2.18) one gets specifically for with the

Green's function now

g. = B(At - p/co)/47tp ; p = IR - RI, At = t-t'. (2.24)

Similarly, it is also found [3] that when = 0, iC1 - 1, the solution of (2.5a) reduces to

g(R,t I R',t'). = FkFs- { o.**} " F.-1 { oFf } (2.25a)

where F, etc. denote Fourier transforms, with

= y(k,s) {dt' e-ikR'-st'() dR' = -FR
-1 Ft { *} (2.25b)

f (- 1
14
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Yo(k,s)., = [k2(1+, oxS) + s2/co 21- 1 . (2.25c)

It can be shown that here [6]

-e (2.26a)4 7cp(1+'Troxs)

and that now, explicitly,
00

(2.26b)
for the Green's function of the associated unbounded medium, where IFI is a confluent
hypergeometric function.

Finally, in the case of the PE approximation (2.8) above, one can show that the Green's
function associated with (2.9) is

g(r,zlr',z')- = -iko eikAz22Ar, Ar = r-r'. (2.27)
2xAr

With a gaussian beam for the source (along z) for these narrow angles, e.g.,

GT = Aoe-z2/a2 , (2.28)

the associated homogeneous field %H is found to be [19]

OXoH(Ar,z) = Jg(r,zlr',z'). GT(z')dz' , (2.29a)

akOA k2a2z2 (2Ark~z 2  2Ar 1
-(4 2 k2a4)1 2 exp - 4 2 +1 -tan- 1  2a (2.29b)

(A2ka4&r 2+00a (4Ar 2+kA0 4 a2

which shows the expected (A.)-1 fall-off as tr - 0.

23 The FOR
The result (2.12) above can be expressed formally in terms of a generalized feedback loop,

as shown in Fig. 2.2. Thus, (2.12) can be regarded as an extension of conventional control
theory, now to deterministic inhomogeneous media for the moment, cf. Sec. 2.4 ff. We call Fig.
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2.2 the feedback operational representation (FOR) for the FOS, (2.12). Equation (2.13) above is
the associated PTSS.

-Gr  +(R,t)

Fig. 2.2 Feedback Operational Representation (FOR)for the propagated field a, Eq. (2.12),for

linear inhomogeneous media.

2.4 The Inhomogeneous Operators 0
These operators embody the various inhomogeneities characteristic of the medium,

including its boundaries. Thus, for a typical propagation scenario, sketched in Fig. 2.1, we may
express 0, (2.1), in more detail for these linear media as a combination of scattering modes:

OS + V + B = [ +s S [V +  ]  B [ B]  (2.30)

where S, V, B, respectively, denote the surface, volume, and bottom in this instance, and (h), (I),

designate the deterministic and (purely) random components of each associated operator, cf. (2.1).
As examples, we have explicitly from the various acoustic propagation models indicated in

Section 2.1, and for interfaces cf. [11, Eq. (15); [18]:

OSBI=RoS fi .(IT-iR)VRI B=RoS h - (IT-IR)S/co; s=ii, (2.31a)

for the Kirchoff approximation to the surface and bottom operator, with 1: = wave or bottom
surface, cf. Fig. 2.1. Here Ro,S are the plane wave reflection and shadowing functions, and ft is
the (inwardly drawn) normal to X. Also, IT, rR are unit vectors in the directions of the incident

and scattered wavefronts. A far-field or Fraunh6fer condition is assumed. For volume

inhomogeneities we have

Qv = Eq. (2.5b), or Eq. (2.6a); Eq. (2.9) for the PE approx. (2.8), etc. (2.3 1b)
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The r6le of n(n) in (2.13) is to generate multiple scatter components:

11(2) = (A.Q)(2) L ,(({Z + Ov + OB) 2 }

_[ 0{(2) + 02) + SV + OA + ...}(2.32)

shows the various second-order multiple scatter contributions among the various types of
inhomogeneity.* In most underwater propagation problems inter-modal scattering can be
neglected, e.g., terms in SV, etc. are ignorable vis-I-vis the intra-modal contributions (2),
OV2), which condition can considerably simplify the subsequent calculations. In any case, the

Astructure (2.30), or "M-form," appearing in the FRO, rl, provides a useful "bookkeeping" of the
various possible interactions.

With inhomogeneous ( *0) media, exact conventional techniques fail, largely because the
medium is not reciprocal [cf. (iii), Sec. 2.2] and there is no general way of applying and evaluating
the initial conditions over the various volume integrals which appear in the development of the
Generalized Huygens Principle (GHP) [20] when ( * 0. [For examples of the GHP see Sec. 7.3,
[20], and pp. 512, 513, [28].] Even in the simplest cases, which are bounded homogeneous
media-the boundary (E) being the inhomogeneity here-the usefulness of the results is severely
limited by the difficulty in obtaining the corresponding Green's functions, gz, except for

boundaries compatible with separable coordinate systems (for which complete sets of
eigenfunctions can be obtained). A second difficulty is that the resulting GHP is basically an
integral equation in the desired scattered field (i.e., scattered by the boundary surface T.), cx, unless
it makes physical sense to specify the field A priori on ., an unlikely situation in most applications.
A third difficulty is simply the fact that these simple cases are not the ones of principal interest.
Finally, a fourth complication is that 0 is often an integral operator, e.g.,

O(R,t I R',t') = Jdt' JQ(R,t I R',t') ( )R',t' dR' (2.32a)

cf. (2.15) for A., for example, formally, expressing the physical fact that the effects of the
inhomogeneities may not be local in their interactions.

Another important reason why conventional techniques fail in the treatment of
inhomogeneous media is the fact that these media are space-time variable in their inhomogeneities,
e.g., 0 = O(R,t I ...), cf. (2.5), (2.6). Such media do not generally support space- and/or time-

harmonic solutions, exceptions being O(RI ...), which permits time-harmonic solutions, and

Of course, one has an appropriate A. preceding each

17
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(t I ...), which allows space-harmonic solutions. Even the standard perturbational and variational

techniques of "classical" approaches (Chapter 9, [20]) are only applicable in the case O(RI ...),
when 6 is deterministic, which, of course, is often not the physical problem in ocean and
atmospheric media, whose local and distributed properties are explicitly space- and time-

dependent. Moreover, even these methods break down when the medium is random (i.e.,
O(RI ...) is stochastic). In fact, all the usual deterministic methods become nugatory when the

medium, and its boundaries, are random and moving.
Even though exact analytical and standard (i.e., nonrandom) perturbational techniques fail,

various useful approximate methods are available. The best-known of these is ray-tracing (a

comparatively high-frequency technique [21], [22]; [29], Parts Il, IV), and modal analysis (a
comparatively low-frequency one [21]). An important recent extension of these ideas, combined
with path-integral methods and super-eikonal procedures, has been developed and applied to the
study of sound speed fluctuations in nonisotropic oceans by Flatt6 et al. [22]. All these methods

are, of course, necessarily approximate and, in fact, skillful approximation is the successful heart
of these approaches. In our present approach to scattering problems we seek to preserve the exact
formal solutions in a canonical development, reserving approximations to the last possible
moment. This has the conceptual advantage of explicitly identifying the disposable portions of the
general result, in the contest of the particular problem ultimately to be studied. Approximations are

inevitable: we attempt to postpone them as long as possible. Accordingly, in this spirit, we seek
formulations which may lead to manageable computational (and occasionally analytic) solutions of

(2.2), (2.4), as well as using older methods.

2.5 Statistical Solutions: Dyson and Bethe-Salpeter Equations
In view of the statistical character of the scattering mechanisms in most cases of physical

interest, as already noted above at the beginning of Sec. 2 and in Sec. 2.1, f, (2.12), is a
stochastic operator. Thus, the "solutions" of the Langevin equation (2.4), as mentioned above, are

the various moments of the total field a, viz.

<a> = aH + < I(n)>ax, (2.33)
n=1

etc. for <az 2>,..., with (14 - (l1X. now, cf. (2.14a). Thus, to get the first moment of a all
(n .l)-order moments of the FRO are required. Similarly, all (n,n'>l)-moments of <Tq(nhr(n')> are
needed for <alqx 2>, etc. This is clearly very cumbersome and also presents questions of

convergence-in-probability (CIP), e.g., ItII < 1 -- <IAI>, ... <Ih(n)Ii>, ... <1(?).
A way around these difficulties is provided, however, by introducing an equivalent

deterministic relation, obtained from
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<0a> a 0 1 (d)<a>; ... 1(d) 101.01(d). (2.34)

Rewriting (2.12) as - ) = aH and averaging, using (2.34), then gives the (deterministic)
Dyson equation

<a>- (_(d))_aH = aH + (dXn)aH

n= (2.35)

where now A(d) is the Equivalent Deterministic FisId Renormalization Operator (EDFRO).

The evaluation of the nonrandom equivalent inhomogeneous operator Oi(d) proceeds from
the relation

Q)- > CH (2.36)

obtained from (2.12) averaged and (2.35). Expanding 01(d) by

( d) = Xn)(R,t IR',t') =f Ql(d)(R,t IR',t') ( )R-,t' dR'dt' (2.37a)
m=0

and applying (2.37a) to (2.36), with the requirement that each term in the resulting PTSS of both

sides of (2.36) be of the same operator order, give

Am = $ )(m>> _ 21. <(IA01 )>, m a I. (2.37b)
j=1

Thus, 0 1(d) is always an integral operator, cf. (2.37a). When 0 is purely afluctuation operator,

e.g., <0 > = 0, which often occurs in volume scattering when boundary effects can be ignored,

usually for geometrical reasons, (2.37b) simplifies considerably. Thus, for example, we find that

then

AM - 0. A &A = ( <O(2)(2 ... (2.37c)

The extension to the second-order cases is made in a similar way ([12], Sec. 4.2). For the
second-order moment <cccI 2>, which is part of the general statistical solution to the generic

Langevin Equation (2.4), we get
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<al2> (t-~ 1 , 1  Y1-4 ~ <ail> <a2>' (2.38)

where d = , etc., and

xhdL is I1,012.AZ(Orl (2.38a)

and <ci> - <ax(rl,tl)>, etc. Here AxL is the second-order EDFRO, cf. (2.35) et seq., and d

may be determined by an extension of the approach for O d) above (2.36) et seq. It is found ([12],

Sec. 4.2) that in the frequent cases where <0> = 0,

(jd _ [<(O,1 2> + d + <((4))>. (2.38b)

Writing, cf. (2.37a),

SX (2)(Rl,tl;R2,t2 I R,',tl';R2',t 2 '), (2.39)
m-O

and using this in the analogue of (2.36), comparing terms of similar order in the resulting PTSS
expansions gives finally

A=: () = <01t 2> - <01> <02> + (((2.39a)

m= 1: 1C2) -_ [<( 1C 2>- <(1> <02>] + [1I1,,<0j> + 102,.<0 2>] ; (2.39b)

m=2: A(2= etc., (2.39c)

In the important cases where <0> = 0, e.g., 0 is a purely fluctuation operator as is often the case

for infinite media, all the odd-order terms in (2.39) vanish, cf. (3.15).
Equation (2.38) is a form of Bethe-Salpeter Equation, which is the second-order

generalization of the Dyson Equation (2.35), and like it, is now completely deterministic. Still

higher-order formulations for <alc2a3>, ..., <Cclcx2...am>, ..., may be derived in the same

formal way. These, however, appear, in most instances, to be too complex to be useful.

Finally, we note again (cf. Sec. 2.2) that an important feature of the governing Langevin
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equation (2.12), (2.13), and the Dyson equation (2.35), is that they also embody afeedback

representation, as shown in Fig. 2.2. (For the Dyson equation (2.35), one replaces 0 by 0 1(d)

and a by <a>.) Thus, these scattering problems may be regarded as an extension of modern

control theory, where now the (linear) ordinary differential equations of the control format are

replaced by partial differential equations of propagation in linear (inhomogeneous) random media.

Similarly, initial conditions of the former are replaced by both boundary and initial conditions for

the latter. This suggests that concepts and methods already available from (linear) control theory
can be helpful here in achieving quantitative solutions for <a>, <ala 2>, etc.

2.6 Related Approaches: The Transport Equation

Instead of working with the Dyson equation (2.35), v:e can achieve formal solutions of the

Langevin Equation (2.12), (2.13) by considering propagation of thefield statistics directly, using
the concept above of the equivalent deterministic medium (EDM), as embodied in the operator

etc., cf. (2.34). For example, since (d) = O1 (d), we may write (2.4), taking the average

of both sides, as

<(O) - 0) a> = <XH> = afH, (2.40a)

or
(t(O) -0(d)) <a> = aH, (2.40b)

which is called a Transport Equation, or here a propagation equation of the mean (total) field, <a>.

From (2.37b) et seq., it is evident that (2.40b) is an integro-differential equation in <a>. Second-

and higher-order generalizations, for the propagation of <ala2>, etc., follow in similar fashion.
(For a treatment of the propagation of field statistics, see [13], [14], Chapter 14, for instance.)

2.7 An Exact Solution for a and <a>

Under certain conditions it is possible to obtain exact solutions for the inhomogeneous (and
total) field al, a. Physically, this can be done for infinite media where boundary interactions can

be ignored, which may be geometrically possible, so that only volume effects occur. We consid-r
the case of deterministic inhomogeneities. It is then required that the (deterministic) inhomogeneity

operator -- takes the form

O(R,t IR',t').* = jdR' J dt'A(R-R',t-t')( )R',t
(.) .-

dk Je-ik'R+st ( )ksAO(ks) ds (2.41)[l(21E)3 B,1 n
[k2
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where Ao(k,s) = F - F t[A(r,t)), and the kernel, A, of Q (230), is dius of convolutional type in

space and time, but * aA(R-R')t&:-t'), and is accordingly nonlocal. The result is

a(Rt) = FkF-1 ( = f  dk [Gor(k,s)yo(k~s).eik*R+st as
R(2,X) 3 Br 1 - N0 (k,s) 27di

No Y- ,- Ao (2.42)

where Yo,. is given by (2.25ab). Here Ck is an appropriate contour in the complex k-plane to

ensure that the radiation condition ("spatial causality") is obeyed [15]. BrI denotes a two-sided
Laplace transform, or Bromwich contour (-oo+id, oo-+id), d a 0, which enables us to handle

transient signals and signals of finite duration (d > 0), as well as the steady-state cases (d = 0),
which latter reduce to the temporal Fourier transform situation, cf. Sec. 2.2. The evaluation of

(2.42) is now reduced to quadratures, which may usually be carried out analytically, at least in an

appropriate series form.
For unbounded random media the same approach may be followed. We reduce the

governing Langevian equation to a Dyson equation, as above, cf. (2.41), where now --
and a -+ <a>. Equation (2.42) now applies if we replace a by <ax>, No0(k,s) by Nd (k,s) =

-yo(k,s).qod(k,s), where q,I (k,s) F-' Ft[(d)}, with the kernel of 1 (d) having the form

qj(d)(R-R',t-t'), cf. (2.41) above. For mixed deterministic and random media, cf. (2.1), a linear
combination of operators 0., 1 (d) with the above properties may be expected.

2.8 The Received Field, X(t)
So far, we have been considering the (total) field g R,t), at some point P(R,t), cf. Fig.

2.1. For subsequent signal processing this field must be sensed by an appropriate receiving

aperture, or array, designated by the (linear) filter operator A, viz.

X=kac, or X=(XI ... ,Xj)= Ac, (j=m,n);J=MN, (2.43)

where (2.12) now represents the received wave, in continuous or discretely sampled form in space

and time. Beam-forming is achieved by summing over the spatial inputs, e.g., X = {7-,Xj-mn}.
See Section IVB of [4].

In fact, whether we are concerned with remote-sensing of the medium or detection and

classification, we must inevitably include the receiving sensor (s), embodied in A. Accordingly, in
such cases we must replace a, <cc>, etc., by X, <X>, etc., in the above and subsequent analyses.
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This is formally straightforward, but will introduce additional computational requirements. We

remark that from the viewpoint of the transmitter-receiver systems of Fig. 1.1 the fields we are
dealing with here are all signal-dependent, i.e., they are generated by a designated active source

(Sin, Fig. 1.1) and can produce random, signal-dependent noise (reverberation or incoherent

scatter) in the receiver. This is in contrast to ambient noise fields, whose mechanisms are quite

independent of the designated source Sin. For the purpose of the present treatment we regard the

always-present ambient noise as essentially negligible; but see Sec. IV, A, [4]: the effects iof

ambient noise sources may be formally including if we now replace the source function -GT by

-GT-GA, when GA is (also) a distributed source mechanism.

3. Diagram Methods and Approximations

An important aid in integrating and approximating the formal solutions of the field

equations here, and in achieving numerical results eventually, are diagram methods ([3], [12], Part

I, [16]). These enable us, along with the relevant physics, to select the dominant contributions and
omit the unimportant ones, and often to choose approximations which considerably reduce the

ensuing calculations. We illustrate the approach with first-order results in the case of random

media.
Note that for deterministic media these r,-jus apply as well if we drop the various averages

over the Langevin ensemble, which no w contains only one member field representation, ao.

3.1 Basic Diagrams
We begin with the following ensemble diagrams, for the ensemble FOR, FOS, PTSS, etc.,

and FD (Feynman diagram) equivalents for the field ensemble {a) at any allowed point P(R,t):

FOR: c' cf. Fig. 2.1 (3.1")

FD: . Eqs. (2.10, 2.12) (3.1b)
(s* 2 .*

FOS, Eq. (2.12) (3.1c)

PISS: : '- t.--+¢-- -+-..]I] .(3.1d)

Here we have -- (- 1 ) representing thefeedforward operator, while +-0 (a {a) denotes the

ensemble feedback or random scattering operator, 0. The ensemble Feynman diagram equivalent
(FD) of the FOR, (3.1 a), is precisely (3. lb), while (3. lc) gives the corresponding ensemble FOS,

and (3. l d) the PTSS, which is readily obtained by iterating the FD, (3. l b), or as the unaveraged
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form of (2.33). The (deterministic) first-order Dyson equation, Eq. (2.35) is now easily written:

First-order Dyson Equation:
d

" 1 (3.2)

<(.> = CaU + Ia (d) <ax>, Eq. (4.4a),

where now we denote the average by < >, applied to the corresponding ensemble symbol. Our

general diagram conventions are to represent ensemble quantities as "open" forms, e.g., =-I,
+-o, 0, etc., and average and otherwise deterministic quantities by solid forms, e.g., +--e, ,
with field averages denoted by brackets, < >, e.g., <-> = <a>, etc. The aim, of course, is

consistency of notation and simplicity with a minimal evolution of complexity.

Diagrams may be manipulated in the same fashion as are operator equations [cf. (2.35),
etc.]: one observes the same positioning rules and conditions of inversion [cf. (2.13)], e.g., for

multiplication and "division." Addition and subtraction are also directly equivalent to the addition

and subtraction of operators and operator derived (algebraic) quantities, as indicated in the
examples below. Finally, transforms of diagrams are the corresponding diagrams of the
transforms. This permits an explicit diagrammatic representation of the various wave number-

frequency (WNF) spectra of the scattered field, particularly the amplitude and intensity spectra in

operator form.
Accordingly, the corresponding diagrams for the equivalent medium [cf. Sec. 2.5] become

[cf. (3.1)]:

Equiv. Med. FOR: cf. (2.35) (3.3a)
(2.35) -

Equiv. Med. FOS:

(5 *" (3.3b)
-dd

Equiv. Med. FD:
First-Order Dyson Equations: am * 0 "*moo; (3.3c)

(2.35) d
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PTSS: * ci . I .d
(2.13) 

(3.3d)

FOS + PTSS: EM .6- A..*. (3.3e)
N d 4(2.12), (2.13)

He r' qn_n2) denotes the n-fold average; * = <0 >; C\ M <0M> ,

* <C )O1 4.CD>, etc. Equations (3.3e) follow from the iteration of the FD (3.3c). In the
same way we find that the EDIM, cf. (2.34), (2.35) as developed in (2.37) with (2.37a,b), can be
expressed diagrammatically as

(
d) , m.O. - -4Q0 -Q -O 60401,2.... (3.4a)

(3.4b)

this last in terms of1 (- : ), where, for example, <T1i?> = <. > .t", etc.

32 Diagram Approximations
A major problem, as always for strong-scatter situations, is the approximate evaluation of

the FOS or its PTSS equivalent, since exact analytic solutions are possible only in speciau instances
[cf. Sec. 2.7]. Another important problem is our ability to truncate the PTSS in comparatively
weak-signal r6gimes: for example, what is the effect of stopping at a given term in the PTSS?
What is the overall contribution of the remaining terms? What criteria of truncation are reasonable,
etc.? In any event, various approximations are in order.

We consider briefly here two useful classes of approximation: I. Series modification, and
I. Truncation. In the former, the character of the equivalent deterministic medium, or "mass"
operator is modified. In the latter, the PTSS is truncated: a finite number of interaction orders is
retained, while the higher-orders are discarded. For example, let us consider the former case (1)
first:

A. Series Modification: First Order Dyson Equation
As applied to the various forms of the Dyson Equation [cf. (2.35), (3.2)], the form of the

equivalent deterministic scattering operators (EDSO), Oid), 0(d), .. . o..m cf. (2.34), is
modified in some fashion, suggested by the physics of the problem. This EDSO is altered, usually
by truncation, while the infinite operator series implied by (1 -1 etc., cf. (2.35), etc.,
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remains. Let us examine, for example, the first-order Dyson equation (2.35) for the mean field
<(x> and postulate a first-order independent structure for .

I. First-Order Independence:

•> ".9 = .. >o=--n, (3.5)

j- j=l

and from (3.5) in (2.37a,b) and then in (2.35) we see at once that the EDISO, ed), is directly

_- = 0, ; t m 1; . (d)1 < (3.6)1d1 indep. ,Ao( l )  <= ; <0=0 (e3;.'6)

where 0d) reduces to a single term, so that (2.35) becomes at once

<a> = aH + < < d = - < - H (3.7)

with the following equivalent (deterministic) diagrams [cf. (3.2), (3.3)]:

j--.w o M (3.7a)

Thus, in the case of purely volume scatter (<O> = 0), Ofd) = 0, and .'. <a> = atH, here, which
clearly shows that the postulate (3.5) is much too restrictive to provide meaningful results in most

cases.
In a similar way, we may employ a more structured, second-order assumption on the

statistical character of 0. This is the second-order "independent" or (generalized) Bourret or Bi-
local approximation, defined by
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11. Second-Order Independence

H J> = 1 ; n = even : C ... d \n). (3.8a)
j j=I

(n-l)/2

= < 2><> ;n=odd := (a... ( (3.8b)
i

A~=0 t)

For the odd-order case we can also set, alternatively,

n (n-1)12

J 1

Consequently, the ED 1SO, 0(d)), (2.37), (2.37a,b), becomes here

A ) + -- A( 1) -.-.- AI -..- + ..

0(d) lB=<0> +1 ~~ ~l~<A-[~JL~ ~~'4 +

(3.9a)
or
0(d) 1lB <0 + < - - - +

(3.9b)

In diagram form these are:

"le * 0 (3.9c)

Now, unlike the purely independent case (3.5), (3.6), ... the series for 0fd) does not terminate, so

that in this second-order situation we are generally forced to truncate the series to obtain

manageable approximations.

Note from (2.37b) that when <6 > = 0, which represents purely volume scatter effects
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without boundaries or interfaces, the bi-local or Bourret approximation (3.8)for Ql ad) reduces to a

single term:

< > = 0:

d)IBourtB = <04> (- Ak'); A. =0, m k 2: C: , (3.10)

for this first-order equivalent deterministic medium. [As we have just seen (cf. (3.9a,b)), with
interfaces the Bourret approximation (3.8) yields a non-terminating series.] This compact result
suggests the utility of the bi-local approximation in applications, wherever it appears reasonable to
describe the principal scattering effects of the medium through second-order spatial (and temporal)
correlations at most.

The various mean fields <cx> are diagrammed here in (3.3) when Old)) IB is given either by
(3.9) or by (3.10) in the unbounded (unlayered) cases. For the latter we have explicitly

S0:

for the associated FOS and PTSS. Unlike the strictly independent case I above, here <ax> * (xH

and <(x> now represents a meaningful expression for the mean scattered field when there are no
interfaces, cf. remarks following Eq. (3.7a). Equation (3.11) is the generalization of Tatarskii's
Eq. (26), 61, [17], based on the "classical" Helmholtz equation (2.6), with time-independent e =

.(Rj), to arbitrary (linear) media and input signals. The corresponding analytic solution, similarly
generalizing Eq. (26a) of Tatarskii (ibid.) is given here by (2.42), modified for random media,

Sec. 2.7.

B. Series Truncation
In the cases above the "mass operator" for EDSO, Old), etc., is approximated either as an

infinite or terminated series [cf. (3.9), (3.6), (3.10)], thus altering the form but not the fact that the
resulting approximate solution is still an infinite, though sub-series of the original PTSS. On the
other hand, truncation replaces the exact (or previously approximated) infinite operator series with
a finite operator series. Of these latter there are two principal types: I: Taylor's series
approximations, which yield analytic forms directly, and : Born approximations, which constitute
a hierarchy of truncated operator series.

Let us consider I first:
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I. Taylor Series Approximations:

Although the exact solution <a> of, say, the first-order Dyson equation (2.35), (3.2),
requires an infinite PTSS, cf. (2.25), we can reduce the evaluation of <cc> to a purely algebraic

solution by means of a Taylor's series expansion with truncation. Thus, if we expand <ac>:

<(X(R',t> = <a(R,t> + (R-R) * VR <x(R,0> + (t'-t0 <c(R,)> +.... (3.12)

and keep only the leading term, we have directly the first-order approximate form

[AAd) <ao>] I" <a(R,0)> AQdhl (3.13a)

where AAjd)l is simply an (analytic) function of (R,t), viz.:

d~ = 1~d~= I M.(R,t IR',t') dR'dt' I ( Id)(R,t. IR",t")l dR"dt = n t)(Rt). (3.13b)

Applying (3.13a,b) to (2.35) gives the approximate analytic result

<0a(1)(R,t) >=" A aH(R,t) _ (3.14)
1 - nd (R,t)

where the exact or various .approximate expressions for the equivalent deterministic medium

operator Id) may be employed, cf. ((2.37a,b), (3.6), (3.10)). Thus, for the fully independent (I)
and bi-local approximations (H), <6> = 0, we have specifically (and exactly) here:

n.)d = 1.<41 ; nM)?d = < 4>l1, <0> = O. (3.15)

Clearly, there may be some points (foci) or lines (caustics) in space where <a(1)> -- 00, when the

denominator of (3.14) vanishes. The reality of these singularities depends on how well (3.14)
approximates <x> itself: the true foci, etc. may not be infinite, but may be located close to the

singularities of the approximation. Thus, (3.14) may serve as a guide as to potentially real foci,

etc.
Finally, the error in using (3.14), say, is generally difficult to assess, because the true
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of <a> is not usually available. However, in the cases where the conditions for (2.41) are obeyed

we can use the exact result (2.42) to determine the error vis-h-vis using (3.14) for <a>.

11. Born Approximations:

Unlike the above procedures A, B, which essentially approximate the "mass operator,"
Q(d), with an infinite or truncated series, cf. (3.9) or (3.10), we may truncate the PTSS [(2.13),

(3.3d), etc.] directly. The resulting finite series is called a Born approximation series, whose order

depends on the stage at which truncation is applied. Thus, for the first-order Dyson equation

(3.3c) for the mean field <a> we can construct the following hierarchy of approximations and

associated diagrams: (PTSS),:
n: ~ ~ ~W O& - ""(E) ° ' (A FOS)o:<@>&,n=, (3.16a)

n = : =0 j+-mo 1p;(M'He> (3.16b)

first Born approximation

n=2: 2 2 (3.16c)

second Born approximation <a> 2; X<(1l.C)(n)>aH;
etc. Vc. etc. (n2!3).

The nth order FOR is simply
t" n.OI

(FOR)n:

nth-order Born approximation n * a <a>:(F),, (3.16d)
n.0

Unlike the approaches above which use modifications of the "mass operator," Q(d), etc., but where

the resulting PTSS remain infinite, or where equivalently, the corresponding FOR and FOS [cf.
(3.11)] contain closed feedback loops, all Born approximations contain only feed-forward loops,

as indicated in (3.16d). This is the immediate consequence, of course, of the truncation of the

direct PTSS (3.3d).

Examples: Ocean Volume and Surface Channels: The Received Field X
As examples, we noted that both the important cases of weak volume scatter in the ocean

and ocean surface scatter are well approximated by at most the scattering element interacting with

the homogeneous field al, the former because multiple scatter effects are usually quite ignorable,

the latter from the physical geometry of the wave surface, which likewise discourages multiple

scatter except within a typical wave crest-to-crest domain (except possibly at small grazing angles),
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cf. Fig. 2.1, (n = 1). Similar considerations usually apply for ocean bottoms, as well, cf. Fig.

2.1. We shall, however, consider only the modes M = S, V here, observing also that 0(30-40 db)

they are effectively independent (see [4], Ref. 21, thesis]): there is negligible coupling in the ocean
between surface (bottom) and volume scatter.)

Accordingly, a first-Born approximation suffices, and we write for the received field, X,

cf. (2.43),

X =- Aa = k, ( .-40 + --+,--o--40) = A(aH + AOI) -0: + -0:

101 SorV

M=S,V. 0=-GT (3.17a)

The mean wave (X) is, with < M> =,

<> = t<C> A( -40+--e--O)= {l(aH +AA<OM>aXH) }. (3.17b)

XH + XI

The second moment of X, (3.17a), is found to be, on averaging over the phases (0) of the input

signal,

<<XIX2>> = < if2<ala2>>O

+ $ 1  { + >
*-" 112112[ + ik/12 •A <(0)0j0)>s +" <qj')qj')> + Z q~k)qlk)> CaHlaH2]  $

k=2 (3.18a)

k =o k = I (k 2)

(x~x2 0).= + - +
!I 22 II 22 1I 22 H,2

"homog." "classical": coherent + incoherent multiple-scatter. incoher.
=unscaL {  FOM: coh. + incoherent (0)

where

0 =-q -'R =+-0 - 0 L{(0) = 1(<V(k)>R + AvO)}
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00 4M o, <0.. > 0 -• -

-< >S:spe av. x 0

A A
4"b = < ql q2> etc. f =< > = < >R,S (3.19)
1 2

Note that the (total) average, < >, as in [30], Appendix A.1 et. seq. involves both an average over

radiation events and an average over random spatial (S) and parameter values (0), embodied in

< >S, cf. (3.14) and, particularly, [30], Appendix A.2.
It is the decomposition principle, embodied in Oh4, (M = S, V, B), ([30], (A.2-5) et seq.),

which allows us to resolve the inhomogeneity operator into sets of distinct and (statistically)

independent entities as specifically exhibited in (3.18a) and (3.18b). Moreover, and most

important, the entities (k = 0, k = 1, k 2) in (3.18a) and (3.18b) above and in (3.17), with the

help of (3.19) have an explicit physical interpretation. Thus, the terms k = 0 contain both the

coherent and incoherent radiation contributions, from all orders (k 2 1) of radiation interactions,
e.g., single and multiple scattering (k 2), for example. Consequently, if v(k) represents the

density of (illuminated) k-coupled scattering elements (k > 1), then <vUk)>R is the coherent
radiative contribution, where < >R is the average over the radiation events associated with the

ensemble of potential (re-)radiating sources. In a similar way

AV(k) V(k) - <V(k)>R (3.20a)

is the fluctuation in the density of k-coupled radiating elements, and is always associated with

incoherent radiation. Accordingly, we have

V(0) - (<v(k)>R + Av(k)) = XVO) V r <V(0 )>R + AV(0 ) (3.20b)
k=1 k=i

showing the basically coherent and incoherent elements of the scattering or source region

containing these various k > 1 types of elements. The (average) density of coherent radiators is

<V(0)>R = L<v(k)>R, since <Av(k)>R = 0. The number of "radiation events" occurring in a small

region dA of the illuminated or emitting domain A is dN, so that v = dN/dA = v(0 ). A taxonomy
and interpretation for the dN, similar to (3.20a), (3.20b), can be constructed: one now has

dN(0 ) -= X(<dN(k)>R + dn(k)) = XdN(k). (3.20c)
k=1 k=1

The relations (3.21) et seq. obviously apply if one replaces v etc. by dN.
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Since the medium in question is linear, the scattering or inhomogeneity operator 0 is a
linear functional of the v(k), i.e., of v(0), e.g., ( = L(v(0 )), thus containing all types of radiation
interaction effects. Moments of v(0), or more generally, of Om, which appear in (3.17) and

(3.18), above, are readily indicated: we have
<0>= L[ <vC0 )

where

<v(0)> - <<v( 0)>R>S. (3.21)

This is different from zero, in scattering, if specular reflection geometry (both on a surface an din

a volume) is available. The second-order moments are instructive:

<00>= L(<v 0 )vJ0 )>) (3.21 a)
where now

V 0)>= <<AV0)Av0)>R> S + <<V 0)>R<Vl 0 )>R>S. (3.21b)

with
Av( 0) = XAv(k).

k=1

Equation (3.21b) contains both incoherent (- Av(O)) and coherent terms (- <AV(0)>R), of all orders
(k > 1) of coupled scattering or radiating elements. The associated covariance of 0 is

Ko= L{<v,°)VJ°)>- <V(O)> <v?°)>) (3.21c)

which embodies wholly incoherent radiation.
As in all these approximate situations, the evaluation of error remains a major, very difficult

problem, because the exact results are generally unknown. We must rely, instead, on our physical
intuition, aided by the (essentially) local physics governing the inhomogeneity operator 0 in

question. This is one reason why the physical "anatomization" of the so-far canonical 0 is
critically important in specific cases.

33 An Estimation Procedure for the Mean Operator
When the elements (-&r, 10k.) of the "input-output" structure of Fig. 2.2 are available,

estimates of the "mass operator" d) may be made to any degree of accuracy from the empirical or

a priori mean field <a.>, in a controlled way, in principle, with determinable error. This is a form
of "system identification" problem, typical of control theory [24]. Here, in essence, one
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-GT

"ess

Fig. 3.1 Feedback-operational methodfor obtaining the (first-order) equivalent medium (integral)

operator Sd"I.

introduces a "black-box" or system with a controllable input, observes the resulting output(s), and

attempts to infer the operations of the system which relates the two. A key feature here is that the

system in question is known to be linear, so that unique relations are established.
For (2.34) to be a physically (vis-A-vis mathematically) useful device, we must be able to

indicate a physical procedure for determining old). This may be done according to the scheme
0(d), fo d),

shown here in Fig. 3. 1. This scheme produces a converging series of estimates, d-st for II

by iteration, when [<a>, -GTJ are provided experimentally, and when iC is either empirically or

analytically given. The basic approach is conceptually quite simple: with a starting estimate

of 0(d), one runs through the second loop, using the (experimentally) observed <a>, the given

source, -GT, and the known global descriptions of the homogeneous component of the medium

(l, here, cf. Sec. 2.2), to get an <a>est. This is then subtracted from the observed <a> from the

first-loop, which in turn leads to an adjustment of , second comparison, with a further

reduction in the error A<a> = <a> - <a>est and A d) ..d) -(d) Various optimum and

suboptimum schemes from control theory (e.g., Wiener filtering, gradient-climbing, etc., now,

however, extended to four dimensions) may be used to drive the errors A<a>, Aofd) essentially tozeroso ta(d)._ ()

zero, so that - 1~, (t Id. This technique may also suggest acceptable approximations in

experimental situations. In fact, approximating old) here is analogous to choosing some

approximation to 0d), (2.37), like A0, or A I, cf. (2.37 a,b,c) et seq.

In all cases the particular physics of the problem will dictate the procedural details, the

approximations (usually required), and the class of "hardware" to be employed, e.g.,

minicomputer, minisupercomputer, or supercomputer. Some form of the latter appears necessary
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in most cases, cf. Sec. 4 ff., since these problems are generally on the scale of long-range weather

prediction. In fact, these problems may be considered as a form of "underwater weather"
prediction, especially when the medium (and interface) behavior is properly included. It is hoped

that the preceding material may provide at least a stimulus to the much-needed and as yet

nonexistent computational solutions to this important class of problems.

4. Concluding Remarks: Analytic Steps to the "Interface Problem"

As we have noted at the beginning of this paper, a principal purpose of this study is to
bring the formal analytic-operational treatment to the point where the computational problems of

implementing these formal results numerically can be addressed. We call this the "Interface

Problem," where the interface lies between the general mathematical formulation, outlined here,

and software design and hardware performance.

The various steps which can bring the analytical treatment to this interface (the dotted line)

are summarized in Table 4.1.

Our philosophy here has been to start with as general a "top-down" approach as possible,

including those physical features which can ultimately influence practical solutions. Among such

features are beam patterns, signal waveform, and, of course, geometry, as well as the relevant

structures of the medium inhomogeneities. Proceeding with particular applications, we usually
find that approximations and simplifications can be made which can significantly reduce the very

heavy computational burdens implied by the operational forms of the desired "solutions." The

latter, of course, are both deterministic and stochastic, and a full treatment will need to include both

these components. The present problems are on the scale ,nf weather prediction problems. In fact,

they are themselves models of "underwater weather." With the recent advances in computer

capabilities (and reduced costs) we may expect these problems to be within range of numerical

solution: The present effort has been presented, in part, to stimulate their numerical investigation,
as well as the achievement of further analytic solutions.
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Table 4.1

Step I Deterministic Inhomogeneities Step IRandom Inhomogeneities

1. Obtain the PDE and b.c.'s + i.c.'s; Eq. 1. Obtain the PDE, b.c.'s + i.c.'s; Eq.
(2.1) et seq.; = "Dynamical Equation"; all (2.1) et seq., for a typical representation

representations are equivalent here Ia. Construct the Langevin Equation, Eq.
(2.4) et seq.

2. Obtain the infinite-medium Green's function 2. Same

g., cf. (2.24), (2.26), (2.27)
3. Operational Solutions: These are complete: 3. Solutions are the statistics of the field a,

PTSS, FOS from the FOR, cf. (2.13), Fig. e.g., <a>, <ala2>, etc., and pdfs
2.2,, Sec. 2.3, 2.4 for 0, the wl(a), w2 (al,a2), ...
inhomogeneity operator, cf. (2.5b), (2.6a). 3a. Construct Dyson's equation (first-
(2.9) order), Sec. 2.5 for Equivalent

Deterministic Media (EDM), sol. <a>
3b. Higher order: Or2, for <alaP, etc.

PfSS; FOS forms (2.35); Some analytic

solutions, Sec. 2.7

4. Approximate 0, local and distributed. 4. Approximate 0(d), etc., Sec. 2.5;

Use diagram methods, Sec. 3.2 Diagram methods assist; Sec. 3, Sec.
[ is usually local, cf. (2.5b), (2.6a), (2.9)1 32 d(d) is non-local; all higher-order

OM's are also non-local

5. Analytic solutions ( for volumes only), cf. 5. Analytic solutions (volumes only), cf.

Sec. 2.7, Eq. (2.42) Sec. 2.7, Eq. (2.42) modified, 2nd ;

1st order. Higher-order by similar way,
but very complicated.

6. Other Approximations: Ray tracing, normal 6. Same, for (EDM), (EDM)2, via N),

modes (time-independent) [21]; R I...)- etc. (See [12] for details.) Realization
time-harmonic solutions; 0(t I...4-space of diagram approximations
harmonic sol.; O(R,t I..)--sol. not harmonic.

Medium non-reciprocal, so Generalized
Huygens Principal not available. Path
Integrals, Super-Eikonal Methods [22], [23]

7. Computational Solutions: special cases only 7. Computational Solutions: generally
(no boundaries) [7], [10]. General software: unknown. To be constructed, approx.

to be estimated, approx. and exact. and exact = Major Problem.
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Glossary of Principal Symbols

a, a(R,t) = total field, at P(R,t)
0aT OR = beam patterns

aH = homogeneous field

BrI = Bromwich contour, (two-sided Laplace transform)
co = mean, iund speed

Vc = sound speed gradient
V2 = Laplacian (in rectangular cobrdinates)
E, E(R,t) = (function of) index of refraction
A, A(d) = field renormalization operators (FRO), (EDFRO)

FD = Feynman diagram

FOR = feedback operational representation
FOS = feedback operational solution
FRO = Field Renormalization Operator
1F1 = confluent hypergeometric function

, F-1  = Fourier transforms
6, G = imput source operators and functions
g,, = Green's function of an unbounded medium

fx, i'y, iz = unit vectors

k, k = wave numbers

t(O) = differential operator for homogeneous part of medium
L = linear operator, cf. Eq. (2.22)

101. = integral Green's function operator
No, Nl, = field renormalization functions
PTSS = perturbation theoretical series solution

, (Yd), OS,V,B... = inhomogeneity operators
R = position vector in rectangular coordinates
A = receiving array operator

Sin = input signal
s = (complex) angular frequency

TINp = medium operator

X, X(t) = receiver array outputs to signal processor

Y,, ko,., If 0o,0 = Fourier and Laplace transform of g.
= unit operator
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